Abstract
Direct observations of compact objects, in the form of radiation spectra, gravitational waves from VIRGO/LIGO, and forthcoming direct imaging, are currently one of the primary source of information on the physics of plasmas in extreme astrophysical environments. The modeling of such physical phenomena requires numerical methods that allow for the simulation of microscopic plasma dynamics in presence of both strong gravity and electromagnetic fields. In Bacchini et al. (2018) we presented a detailed study on numerical techniques for the integration of free geodesic motion. Here we extend the study by introducing electromagnetic forces in the simulation of charged particles in curved spacetimes. We extend the Hamiltonian energy-conserving method presented in Bacchini et al. (2018) to include the Lorentz force and we test its performance compared to that of standard explicit Runge-Kutta and implicit midpoint rule schemes against analytic solutions. Then, we show the application of the numerical schemes to the integration of test particle trajectories in general relativistic magnetohydrodynamic (GRMHD) simulations, by modifying the algorithms to handle grid-based electromagnetic fields. We test this approach by simulating ensembles of charged particles in a static GRMHD configuration obtained with the Black Hole Accretion Code (BHAC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.