Abstract
A generalized energy-based fragmentation (GEBF) approach has been combined with a universal solvation model based on solute electron density (SMD) to compute the solvation energies of general large systems (such as protein molecules) in solutions. In the GEBF-SMD method, the solvation energy of a target system could be combined by the corresponding solvation energies of various subsystems, each of which is embedded in the background point charges and surface charges on the surface of solute cavity at the positions of its atoms and neighbouring atoms outside of the subsystem. Our results show that the GEBF-SMD model could reproduce the conventional SMD solvation energies quite well for various proteins in solutions, and could significantly reduce the computational costs for the SMD calculations of large proteins. In addition, the GEBF-SMD approach is almost independent of the basis sets and the types of solvents (including protic, polar, and nonpolar ones). Also, the GEBF-SMD approach could reproduce the relative energies of various conformers of large systems in solutions. Therefore, the GEBF-SMD method is expected to be applicable for computing the solvation energies of a broad range of large systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.