Abstract

The elastic task model is a powerful model for adapting periodic real-time systems in the presence of uncertainty. This work generalizes the existing elastic scheduling approach in several directions. First, it presents a general framework, which formulates a trade-off between task schedulability and a specific performance metric as an optimization problem. Such a framework allows real-time systems under overloads to graciously adapt by adjusting their performance level. Second, it is shown in this work that the well-known task compression algorithm in fact solves a quadratic programming problem that seeks to minimize the sum of the squared deviation of a task's utilization from initial desired utilization. This finding indicates that the task compression algorithm may be applied to efficiently solve other similar types of problems that often arise in real-time applications. In particular, an iterative approach is proposed to solve the period selection problem for real-time tasks with deadlines less than respective periods. Further, the framework is adapted to solve the deadline selection problem, which is useful in some control systems with fixed periods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.