Abstract

The offset discrete Fourier transform (DFT) is a discrete transform with kernel exp[-j2/spl pi/(m-a)(n-b)/N]. It is more generalized and flexible than the original DFT and has very close relations with the discrete cosine transform (DCT) of type 4 (DCT-IV), DCT-VIII, discrete sine transform (DST)-IV, DST-VIII, and discrete Hartley transform (DHT)-IV. In this paper, we derive the eigenvectors/eigenvalues of the offset DFT, especially for the case where a+b is an integer. By convolution theorem, we can derive the close form eigenvector sets of the offset DFT when a+b is an integer. We also show the general form of the eigenvectors in this case. Then, we use the eigenvectors/eigenvalues of the offset DFT to derive the eigenvectors/eigenvalues of the DCT-IV, DCT-VIII, DST-IV, DST-VIII, and DHT-IV. After the eigenvectors/eigenvalues are derived, we can use the eigenvectors-decomposition method to derive the fractional operations of the offset DFT, DCT-IV, DCT-VIII, DST-IV, DST-VIII, and DHT-IV. These fractional operations are more flexible than the original ones and can be used for filter design, data compression, encryption, and watermarking, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.