Abstract

The theory of arrays is ubiquitous in the context of software and hardware verification and symbolic analysis. The basic array theory was introduced by McCarthy and allows to symbolically representing array updates. In this paper we present combinatory array logic, CAL, using a small, but powerful core of combinators, and reduce it to the theory of uninterpreted functions. CAL allows expressing properties that go well beyond the basic array theory. We provide a new efficient decision procedure for the base theory as well as CAL. The efficient procedure serves a critical role in the performance of the state-of-the-art SMT solver Z3 on array formulas from applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.