Abstract
Generalized Drinfeld-Sokolov (DS) hierarchies are constructed through local reductions of Hamiltonian flows generated by monodromy invariants on the dual of a loop algebra. Following earlier work of De Groot et al., reductions based upon graded regular elements of arbitrary Heisenberg subalgebras are considered. We show that, in the case of the nontwisted loop algebra ℓ(gl n ), graded regular elements exist only in those Heisenberg subalgebras which correspond either to the partitions ofn into the sum of equal numbersn=pr or to equal numbers plus onen=pr+1. We prove that the reduction belonging to the grade 1 regular elements in the casen=pr yields thep×p matrix version of the Gelfand-Dickeyr-KdV hierarchy, generalizing the scalar casep=1 considered by DS. The methods of DS are utilized throughout the analysis, but formulating the reduction entirely within the Hamiltonian framework provided by the classical r-matrix approach leads to some simplifications even forp=1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.