Abstract

We prove some distribution results for the k-fold divisor function in arithmetic progressions to moduli that exceed the square-root of length X of the sum, with appropriate constrains and averaging on the moduli, saving a power of X from the trivial bound. On assuming the Generalized Riemann Hypothesis, we obtain uniform power saving error terms that are independent of k.We follow and specialize Y.T. Zhang's method on bounded gaps between primes to our setting. Our arguments are essentially self-contained, with the exception on the use of Deligne's work on the Riemann Hypothesis for varieties over finite fields. In particular, we avoid the reliance on Siegel's theorem, leading to some effective estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.