Abstract

Symmetric coherent states are of interest in quantum cryptography, since for such states there is an upper bound for unambiguous state discrimination (USD) probability, which is used to resist USD attack. But it is not completely clear what an eavesdropper can do for shorter channel length, when USD attack in not available. We consider the task of generalized discrimination between symmetric coherent states and construct an operation which enlarges the information content of the states with fixed failure probability. We apply this transformation to develop a zero-error eavesdropping strategy for quantum cryptography on symmetric coherent states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.