Abstract

The Fokker-Planck equation for the probability f(r,t) to find a random walker at position r at time t is derived for the case that the probability to make jumps depends nonlinearly on f(r,t) . The result is a generalized form of the classical Fokker-Planck equation where the effects of drift, due to a violation of detailed balance, and of external fields are also considered. It is shown that in the absence of drift and external fields a scaling solution, describing anomalous diffusion, is possible only if the nonlinearity in the jump probability is of the power law type [ approximately f;{eta}(r,t)] , in which case the generalized Fokker-Planck equation reduces to the porous media equation. Monte Carlo simulations are shown to confirm the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.