Abstract

AbstractSystematic construction of fractional ordinary differential equations [FODEs] has gained much attention nowadays research because dimensional homogeneity plays a major role in mathematical modeling. In order to keep up the dimension of the physical quantities, we need some auxiliary parameters. When we utilize auxiliary parameters, the FODE turns out to be more intricate. One of such kind of model is non-homogeneous fractional second order RLC circuit. To solve this kind of complicated FODEs, we need proficient modern analytical method. In this paper, we use two different methods, one is modern and the other is traditional, namely generalized differential transform Method (GDTM) and Laplace transform method (LTM) to obtain the analytical solution of non-homogeneous fractional second order RLC circuit. We present the solution in terms of convergent series. Though GDTM and LTM are capable to produce the exact solution of fractional RLC circuit, great strength of GDTM over LTM is that differential transform of initial conditions occupy the coefficients of first two terms in series solution so that we arrive exact solution with few iterations and also, it does not allow the noise terms while computing the coefficients. Due to this, GDTM takes less time to converge than LTM and it has been demonstrated. Furthermost, we discuss the characteristics of non-homogeneous fractional second order RLC circuit through numerical illustrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.