Abstract

Nonsmooth equation-solving and optimization algorithms which require local sensitivity information are extended to systems with nonsmooth parametric differential---algebraic equations embedded. Nonsmooth differential---algebraic equations refers here to semi-explicit differential---algebraic equations with algebraic equations satisfying local Lipschitz continuity and differential right-hand side functions satisfying Caratheodory-like conditions. Using lexicographic differentiation, an auxiliary nonsmooth differential---algebraic equation system is obtained whose unique solution furnishes the desired parametric sensitivities. More specifically, lexicographic derivatives of solutions of nonsmooth parametric differential---algebraic equations are obtained. Lexicographic derivatives have been shown to be elements of the plenary hull of the Clarke (generalized) Jacobian and thus computationally relevant in the aforementioned algorithms. To accomplish this goal, the lexicographic smoothness of an extended implicit function is proved. Moreover, these generalized derivative elements can be calculated in tractable ways thanks to recent advancements in nonsmooth analysis. Forward sensitivity functions for nonsmooth parametric differential---algebraic equations are therefore characterized, extending the classical sensitivity results for smooth parametric differential---algebraic equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.