Abstract
Let R be a prime algebra over a commutative ring K, Z and C the center and extended centroid of R, respectively, g a generalized derivation of R, and f (X1, …,Xt) a multilinear polynomial over K. If g(f (X1, …,Xt))n ∈ Z for all x1, …, xt ∈ R, then either there exists an element λ ∈ C such that g(x)= λx for all x ∈ R or f(x1, …,xt) is central-valued on R except when R satisfies s4, the standard identity in four variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.