Abstract
We construct a generalized Darboux transformation (GDT) of a general coupled nonlinear Schrödinger (GCNLS) system. Using GDT method we derive a recursive formula and present determinant representations for Nth order rogue wave solution of this system. Using these representations we derive first, second and third order rogue wave solutions with certain free parameters. By varying these free parameters we demonstrate the formation of triplet, triangle and hexagonal patterns of rogue waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.