Abstract
In this paper, we propose a recursive Darboux transformation in a generalized form of a focusing vector Nonlinear Schrödinger Equation (NLSE) known as the Manakov System. We apply this generalized recursive Darboux transformation to the Lax-pairs of this system in view of generating the Nth-order vector generalization rogue wave solutions with a rule of iteration. We discuss from first- to three-order vector generalizations of rogue wave solutions while illustrating these features with some 3D, 2D graphical depictions. We illustrate a clear connection between higher-order rogue wave solutions and their free parameters for better understanding the physical phenomena described by the Manakov system
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.