Abstract

The influence of the grain angle on the cutting force when milling wood is not yet detailed, apart from particular cases (end-grain, parallel to the grain, or in some rare cases 45°-cut). Thus, setting-up wood machining operations with complex paths still relies mainly on the experience of the operators because of the lack of scientific knowledge easily transferable to the industry. The aim of the present work is to propose an empirical model based on specific cutting coefficients for the assessment of cutting force when peripheral milling of wood based on the following input: uncut chip thickness and width, grain angle (angle between the tool velocity vector and the grain direction of the wood), density and tool helix angle. The specific cutting coefficients were determined by peripheral milling with different depths of cut wood disks issued from different wood species on a dynamometric platform to record the forces. Milling a sample into a round shape (a disk) allows to measure the cutting forces toward every grain angle into a sole basic diameter reduction operation. Force signals are then post-processed to carefully clean the natural vibrations of the system without impacting their magnitudes. The experiment is repeated on five species with a large range of densities, machining two disks per species for five depths of cut in up- and down milling conditions for three different tool helix angles. Finally, a simple cutting force model, based on the previously cited parameters, is proposed, and its robustness analysed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.