Abstract

Abstract The flow behavior of non‐Newtonian power‐law fluids in channels of irregular cross‐section is examined. The driving force of the flow may be a constant pressure gradient (Poiseuille flow), a moving boundary (Couette flow) or the combination of the two (generalized Couette flow). There are three factors that influence the fluid motion in a channel, namely, the power‐law index n, the channel geometry and a dimensionless quantity E which can be viewed as the ratio of drag flow to pressure flow. The effects of these variables on velocity distributions and volumetric flow rates for various channel geometries are analyzed. The direct application of the numerical results on extruder design and operation is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.