Abstract

A coprime array uses two uniform linear subarrays to construct an effective difference coarray with certain desirable characteristics, such as a high number of degrees-of-freedom for direction-of-arrival (DOA) estimation. In this paper, we generalize the coprime array concept with two operations. The first operation is through the compression of the inter-element spacing of one subarray and the resulting structure treats the existing variations of coprime array configurations as well as the nested array structure as its special cases. The second operation exploits two displaced subarrays, and the resulting coprime array structure allows the minimum inter-element spacing to be much larger than the typical half-wavelength requirement, making them useful in applications where a small interelement spacing is infeasible. The performance of the generalized coarray structures is evaluated using their difference coarray equivalence. In particular, we derive the analytical expressions for the coarray aperture, the achievable number of unique lags, and the maximum number of consecutive lags for quantitative evaluation, comparison, and design of coprime arrays. The usefulness of these results is demonstrated using examples applied for DOA estimations utilizing both subspace-based and sparse signal reconstruction techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.