Abstract
Continuous time random walks, which generalize random walks by adding a stochastic time between jumps, provide a useful description of stochastic transport at mesoscopic scales. The continuous time random walk model can accommodate certain features, such as trapping, which are not manifest in the standard macroscopic diffusion equation. The trapping is incorporated through a waiting time density, and a fractional diffusion equation results from a power law waiting time. A generalized continuous time random walk model with biased jumps has been used to consider transport that is also subject to an external force. Here we have derived the master equations for continuous time random walks with space- and time-dependent forcing for two cases: when the force is evaluated at the start of the waiting time and at the end of the waiting time. The differences persist in low order spatial continuum approximations; however, the two processes are shown to be governed by the same Fokker--Planck equations in the diffusi...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.