Abstract

Generalized continuous time random walks with independent, heavy-tailed random waiting times and long range dependent jumps are considered. Their scaling limits are determined in terms of the Hermite processes and inverse of stable subordinators. These limiting processes provide an interesting new class of non-Markovian, non-Gaussian self-similar processes.Tail probability estimates for the limiting process are established, which are applied in turn to establish uniform and local moduli of continuity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.