Abstract

Subpixel detection in multispectral imagery presents a chal- lenging problem due to relatively low spatial and spectral resolution. We present a generalized constrained energy minimization (GCEM) ap- proach to detecting targets in multispectral imagery at subpixel level. GCEM is a hybrid technique that combines a constrained energy mini- mization (CEM) method developed for hyperspectral image classification with a dimensionality expansion (DE) approach resulting from a gener- alized orthogonal subspace projection (GOSP) developed for multispec- tral image classification. DE enables us to generate additional bands from original multispectral images nonlinearly so that CEM can be used for subpixel detection to extract targets embedded in multispectral im- ages. CEM has been successfully applied to hyperspectral target detec- tion and image classification. Its applicability to multispectral imagery is yet to be investigated. A potential limitation of CEM on multispectral imagery is the effectiveness of interference elimination due to the lack of sufficient dimensionality. DE is introduced to mitigate this problem by expanding the original data dimensionality. Experiments show that the proposed GCEM detects targets more effectively than GOSP and CEM without dimensionality expansion. © 2000 Society of Photo-Optical Instrumenta- tion Engineers. (S0091-3286(00)01205-8)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.