Abstract
We propose a strategy to design locally conservative finite-difference approximations of convective derivatives for shock-free compressible flows with arbitrary order of accuracy, that generalizes the approach of Ducros et al. (2000) [1], and that can be applied as a building block of low-dissipative, hybrid shock-capturing methods. The approximations stem from application of standard central difference formulas to split forms of the convective terms in the compressible Euler equations, which guarantee strong numerical stability and (near) energy preservation in the inviscid limit. A convenient implementation of the high-order fluxes is suggested, which guarantees improved computational efficiency over existing methods. Numerical tests performed for isotropic turbulence at zero viscosity show stability of schemes with order of accuracy up to ten, and effectiveness of convective splitting of Kennedy and Gruber (2008) [2] in providing extra stability in the presence of strong density variations. Numerical simulations of compressible turbulent boundary layer flow indicate suitability of the method for non-uniform grids, and overall support superior computational efficiency of high-order schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.