Abstract

The paper studies the iterative solutions of the generalized coupled Sylvester transpose matrix equations over the reflexive (anti-reflexive) matrix group by the generalized conjugate direction algorithm. The convergence analysis shows that the solution group can be obtained within finite iterative steps in the absence of round-off errors for any initial given reflexive (anti-reflexive) matrix group. Furthermore, we can get the minimum-norm solution group by choosing special kinds of initial matrix group. Finally, some numerical examples are given to demonstrate the algorithm considered is quite effective in actual computation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.