Abstract
In the classical Batalin--Vilkovisky formalism, the BV operator $\Delta$ is a differential operator of order two with respect to the commutative product. In the differential graded setting, it is known that if the BV operator is homotopically trivial, then there is a tree level cohomological field theory induced on the homology; this is a manifestation of the fact that the homotopy quotient of the operad of BV algebras by $\Delta$ is represented by the operad of hypercommutative algebras. In this paper, we study generalized Batalin--Vilkovisky algebras where the operator $\Delta$ is of the given finite order. In that case, we unravel a new interesting algebraic structure on the homology whenever $\Delta$ is homotopically trivial. We also suggest that the sequence of algebraic structures arising in the higher order formalism is a part of a "trinity" of remarkable mathematical objects, fitting the philosophy proposed by Arnold in the 1990s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.