Abstract

Though manifold-based clustering has become a popular research topic, we observe that one important factor has been omitted by these works, namely that the defined clustering loss may corrupt the local and global structure of the latent space. In this paper, we propose a novel Generalized Clustering and Multi-manifold Learning (GCML) framework with geometric structure preservation for generalized data, i.e., not limited to 2-D image data and has a wide range of applications in speech, text, and biology domains. In the proposed framework, manifold clustering is done in the latent space guided by a clustering loss. To overcome the problem that the clustering-oriented loss may deteriorate the geometric structure of the latent space, an isometric loss is proposed for preserving intra-manifold structure locally and a ranking loss for inter-manifold structure globally. Extensive experimental results have shown that GCML exhibits superior performance to counterparts in terms of qualitative visualizations and quantitative metrics, which demonstrates the effectiveness of preserving geometric structure. Code has been made available at: https://github.com/LirongWu/GCML.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.