Abstract

In this paper we consider generalized chi-square goodness-of-fit tests based on increasingly finer partitions (as the sample size increases) for models with location-scale nuisance parameters. The asymptotic distributions are derived both under the null hypothesis and under local alternatives, obtained by taking contamination families of densities between the null hypothesis and fixed alternative hypotheses. If the number of random cells increases to infinity, the Rao-Robson-Nikulin test statistic is shown to be superior to the Watson-Roy and Dzhaparidze-Nikulin statistics. Conditions are derived under which it is optimal to let the number of classes tend to infinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.