Abstract
We show that there exists a family of Riemannian metrics on the tangent bundle of a two-sphere, which induces metrics of constant curvature on its unit tangent bundle. In other words, given such a metric on the tangent bundle of a two-sphere, the Hopf map is identified with a Riemannian submersion from the universal covering space of the unit tangent bundle, equipped with the induced metric, onto the two-sphere. A hyperbolic counterpart dealing with the tangent bundle of a hyperbolic plane is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.