Abstract

Summary There is a growing need to analyze data sets characterized by several sets of variables observed on the same set of individuals. Such complex data structures are known as multiblock (or multiple-set) data sets. Multi-block data sets are encountered in diverse fields including bioinformatics, chemometrics, food analysis, etc. Generalized Canonical Correlation Analysis (GCCA) is a very powerful method to study this kind of relationships between blocks. It can also be viewed as a method for the integration of information from K > 2 distinct sources (Takane and Oshima-Takane 2002). In this paper, GCCA is considered in the context of multivariate functional data. Such data are treated as realizations of multivariate random processes. GCCA is a technique that allows the joint analysis of several sets of data through dimensionality reduction. The central problem of GCCA is to construct a series of components aiming to maximize the association among the multiple variable sets. This method will be presented for multivariate functional data. Finally, a practical example will be discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.