Abstract
Hysteresis and fluid entrapment pose unresolved problems for the theory of flow in porous media. A generalized macroscopic mixture theory for immiscible two-phase displacement in porous media (Hilfer 2006b Phys. Rev. E 73 016307) has introduced percolating and nonpercolating phases. It is studied here in an analytically tractable hyperbolic limit. In this limit a fractional flow formulation exists, that resembles the traditional theory. The Riemann problem is solved analytically in one dimension by the method of characteristics. Initial and boundary value problems exhibit shocks and rarefaction waves similar to the traditional Buckley–Leverett theory. However, contrary to the traditional theory, the generalized theory permits simultaneous drainage and imbibition processes. Displacement processes involving flow reversal are equally allowed. Shock fronts and rarefaction waves in both directions in the percolating and the nonpercolating fluids are found, which can be compared directly to experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.