Abstract

The Born scattering approximation has been widely used in seismology to study scattered waves, and to linearize the propagation problem for inversion. The standard Born theory requires the model be separated into a smooth, reference model and a perturbation. Scattering occurs from the pertubation. In the distorted Born approximation, when the reference model is inhomogeneous, the reference Green's functions are normally not known exactly, but the error in these Green's functions is rarely quantified. In this paper, we generalize Born scattering theory to include the errors in the Green's functions explicitly, and obtain scattering integrals from these errors. For forward modelling, there is no need to separate the model into a reference and perturbation part - approximate Green's functions in the true model can be used to calculate the scattered signals. The theory is developed for inhomogeneous, anisotropic media. Asymptotic ray theory results are suitable approximate Green's functions for the generalized Born scattering theory. The error terms are simple, easily calculated and included in the scattering integrals. Various applications of generalized Born scattering theory have already appeared in the literature, e.g. quasi-shear ray coupling, and this paper is restricted to an improved and more complete theoretical development. Further applications will appear elsewhere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.