Abstract

The kernel method is a nonparametric procedure used to estimate densities with support in R. When nonnegative data are modeled, the classical kernel density estimator presents a bias problem in the neighborhood of zero. Several methods have been developed to reduce this bias, which include the boundary kernel, data transformation and reflection methods. An alternative proposal is to use kernel estimators based on distributions with nonnegative support, as is the case of the Birnbaum–Saunders (BS), gamma, inverse Gaussian and lognormal models. Generalized BS (GBS) distributions have received considerable attention, due to their properties and their flexibility in modeling different types of data. In this paper, we propose, characterize and implement the kernel method based on GBS distributions to estimate densities with nonnegative support. In addition, we provide a simple method to choose the corresponding bandwidth. In order to evaluate the performance of these new estimators, we conduct a Monte Carlo simulation study. The obtained results are illustrated by analyzing financial real data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.