Abstract
Abstract In the present paper, we generalize the celebrated classical lemma of Birch and Heegner on quadratic twists of elliptic curves over ℚ {{\mathbb{Q}}} . We prove the existence of explicit infinite families of quadratic twists with analytic ranks 0 and 1 for a large class of elliptic curves, and use Heegner points to explicitly construct rational points of infinite order on the twists of rank 1. In addition, we show that these families of quadratic twists satisfy the 2-part of the Birch and Swinnerton-Dyer conjecture when the original curve does. We also prove a new result in the direction of the Goldfeld conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal für die reine und angewandte Mathematik (Crelles Journal)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.