Abstract
We prove some existence results of solutions for a new class of generalized bi-quasivariational inequalities (GBQVI) for quasi-pseudomonotone type II and strongly quasi-pseudomonotone type II operators defined on noncompact sets in locally convex Hausdorff topological vector spaces. To obtain these results on GBQVI for quasi-pseudomonotone type II and strongly quasi-pseudomonotone type II operators, we use Chowdhury and Tan's generalized version (1996) of Ky Fan's minimax inequality (1972) as the main tool.
Highlights
Introduction and PreliminariesIn this paper, we obtain some results on generalized bi-quasi-variational inequalities for quasi-pseudo-monotone type II and strongly quasi-pseudo-monotone type II operators defined on noncompact sets in locally convex Hausdorff topological vector spaces
We prove some existence results of solutions for a new class of generalized bi-quasivariational inequalities GBQVI for quasi-pseudomonotone type II and strongly quasi-pseudomonotone type II operators defined on noncompact sets in locally convex Hausdorff topological vector spaces
We obtain some results on generalized bi-quasi-variational inequalities for quasi-pseudo-monotone type II and strongly quasi-pseudo-monotone type II operators defined on noncompact sets in locally convex Hausdorff topological vector spaces
Summary
We obtain some results on generalized bi-quasi-variational inequalities for quasi-pseudo-monotone type II and strongly quasi-pseudo-monotone type II operators defined on noncompact sets in locally convex Hausdorff topological vector spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.