Abstract
The first significant (leftmost nonzero) digit of seemingly random numbers often appears to conform to a logarithmic distribution, with more 1s than 2s, more 2s than 3s, and so forth, a phenomenon known as Benford’s law. When humans try to produce random numbers, they often fail to conform to this distribution. This feature grounds the so-called Benford analysis, aiming at detecting fabricated data. A generalized Benford’s law (GBL), extending the classical Benford’s law, has been defined recently. In two studies, we provide some empirical support for the generalized Benford analysis, broadening the classical Benford analysis. We also conclude that familiarity with the numerical domain involved as well as cognitive effort only have a mild effect on the method’s accuracy and can hardly explain the positive results provided here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.