Abstract
Bayesian additive regression trees have seen increased interest in recent years due to their ability to combine machine learning techniques with principled uncertainty quantification. The Bayesian backfitting algorithm used to fit BART models, however, limits their application to a small class of models for which conditional conjugacy exists. In this article, we greatly expand the domain of applicability of BART to arbitrary generalized BART models by introducing a very simple, tuning-parameter-free, reversible jump Markov chain Monte Carlo algorithm. Our algorithm requires only that the user be able to compute the likelihood and (optionally) its gradient and Fisher information. The potential applications are very broad; we consider examples in survival analysis, structured heteroskedastic regression, and gamma shape regression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.