Abstract

The artificial neural network is a popular framework in machine learning. To empower individual neurons, we recently suggested that the current type of neurons could be upgraded to second-order counterparts, in which the linear operation between inputs to a neuron and the associated weights is replaced with a nonlinear quadratic operation. A single second-order neurons already have a strong nonlinear modeling ability, such as implementing basic fuzzy logic operations. In this paper, we develop a general backpropagation algorithm to train the network consisting of second-order neurons. The numerical studies are performed to verify the generalized backpropagation algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.