Abstract

Models with time-varying parameters have become more popular for time series analysis. Among these models, Generalized Autoregressive Score (GAS) models are based on the specification of the mechanism through which past observations of the variable of interest affect the current value of the time-varying parameters. GAS models allow capturing the dynamic behavior of time series processes, which is an advantage over models such as ARMA and GARCH with fixed parameters. In this paper, we extend the distribution setting of GAS models from classical densities to sinh-arcsinh (SAS) ones, with emphasis on SAS-Gaussian and SAS-t distribution. The SAS family provides flexible distributions that allow modeling the asymmetry as light or heavy tailed. The parameters of the family enable clear interpretations, and limiting distributions are especially appealing as shape parameters tend to their extreme values. The proposed method’s performance is illustrated in simulations and a real-world application to a fish condition dataset. In conclusion, the SAS-Gaussian distribution fits the dataset best by far.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.