Abstract

A class of generalized autoregressive moving average (GARMA) models is developed that extends the univariate Gaussian ARMA time series model to a flexible observation-driven model for non-Gaussian time series data. The dependent variable is assumed to have a conditional exponential family distribution given the past history of the process. The model estimation is carried out using an iteratively reweighted least squares algorithm. Properties of the model, including stationarity and marginal moments, are either derived explicitly or investigated using Monte Carlo simulation. The relationship of the GARMA model to other models is shown, including the autoregressive models of Zeger and Qaqish, the moving average models of Li, and the reparameterized generalized autoregressive conditional heteroscedastic GARCH model (providing the formula for its fourth marginal moment not previously derived). The model is demonstrated by the application of the GARMA model with a negative binomial conditional distribution to a well-known time series dataset of poliomyelitis counts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.