Abstract

We present a generalized analytical solution to the normalized state equations of a class of coupled simple second-order non-autonomous circuit systems. The analytical solutions thus obtained are used to study the synchronization dynamics of two different types of circuit systems, differing only by their constituting nonlinear element. The synchronization dynamics of the coupled systems is studied through two-parameter bifurcation diagrams, phase portraits, and time-series plots obtained from the explicit analytical solutions. Experimental figures are presented to substantiate the analytical results. The generalization of the analytical solution for other types of coupled simple chaotic systems is discussed. The synchronization dynamics of the coupled chaotic systems studied through two-parameter bifurcation diagrams obtained from the explicit analytical solutions is reported for the first time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call