Abstract

A classical result states that, in n variables, the space of the entire functionals can be identified with the space of exponential type functions via the Fourier–Borel transform. Thus, in this way the spaces of the entire and exponential type functions can be put in duality, the Martineau duality. We give a proof that the entire functionals, on the countable direct product and direct sum of the field of complex numbers, can be identified with exponential type functions in the same way. In other words, we show that the infinite dimensional Fourier–Borel transform defines Martineau dualities analogous to the finite dimensional case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.