Abstract

Generalized additive models are generalized linear models in which the linear predictor includes a sum of smooth functions of covariates, where the shape of the functions is to be estimated. They have also been generalized beyond the original generalized linear model setting to distributions outside the exponential family and to situations in which multiple parameters of the response distribution may depend on sums of smooth functions of covariates. The widely used computational and inferential framework in which the smooth terms are represented as latent Gaussian processes, splines, or Gaussian random effects is reviewed, paying particular attention to the case in which computational and theoretical tractability is obtained by prior rank reduction of the model terms. An empirical Bayes approach is taken, and its relatively good frequentist performance discussed, along with some more overtly frequentist approaches to model selection. Estimation of the degree of smoothness of component functions via cross validation or marginal likelihood is covered, alongside the computational strategies required in practice, including when data and models are reasonably large. It is briefly shown how the framework extends easily to location-scale modeling, and, with more effort, to techniques such as quantile regression. Also covered are the main classes of smooths of multiple covariates that may be included in models: isotropic splines and tensor product smooth interaction terms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.