Abstract

A generalized adaptive subspace detector for range-Doppler spread target (RDST-GASD) in the non-Gaussian clutter is derived in this paper. The subspace model of multi-pulse wideband radar target returns is established in the frequency-slow time domain. The clutters are modeled as nonhomogeneous spherically invariant random vectors (SIRVs); that is, the power of the clutter is different from one range cell to another. The clutter covariance matrix is estimated with the secondary data. The constant false alarm rate (CFAR) property of RDST-GASD with respect to both the power and the covariance matrix of the clutter is demonstrated theoretically. Considering that there is target range walking across range cells during a coherent processing interval (CPI) for wideband radar, the RDST-GASD does range alignment to the multiple returns of the target in a CPI. As a result, the coherent integration is implemented and the detection performance is improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.