Abstract

ABSTRACTA general approach to the dynamics of structural relaxation in amorphous solids is developed. A form of the recombination kinetics of defects is chosen which removes the ad hoc assumption made in previous theories that defects recombine only with others of identical activation energy. The generalized theory is tested quantitatively by modelling the structural relaxation of amorphous silicon, and comparing the results with the experimental data on structural relaxation. It is found that the generalized theory is necessary in order to accurately describe the time-resolved relaxation data. The generalized theory is also applied to estimate the effect of irradiation on the nucleation kinetics of crystal silicon, and is found to agree well with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call