Abstract

The paper examines the renewal function associated with a sequence of probability distributions, which is defined by concave recurrence relations or by an even more general procedure. The elementary renewal theorem is generalized to such sequences. The results can be used to establish renewal theorems for first death in branching processes, if only the possibly generation dependent probability generating functions converge to a limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.