Abstract
Let A be an operator with the polar decomposition A = U|A|. The Aluthge transform of the operator A, denoted by ?, is defined as ? = |A|1/2U |A|1/2. In this paper, first we generalize the definition of Aluthge transformfor non-negative continuous functions f,g such that f(x)g(x) = x (x ? 0). Then, by using this definition, we get some numerical radius inequalities. Among other inequalities, it is shown that if A is bounded linear operator on a complex Hilbert space H, then h (w(A)) ? 1/4||h(g2 (|A|)) + h(f2(|A|)|| + 1/2h (w(? f,g)), where f,g are non-negative continuous functions such that f(x)g(x) = x (x ? 0), h is a non-negative and non-decreasing convex function on [0,?) and ? f,g = f (|A|)Ug(|A|).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.