Abstract
Semi-supervised learning has been of growing interest over the past few years and many methods have been proposed. Although various algorithms are provided to implement semi-supervised learning, there are still gaps in our understanding of the dependence of generalization error on the numbers of labeled and unlabeled data. In this paper, we consider a graph-based semi-supervised classification algorithm and establish its generalization error bounds. Our results show the close relations between the generalization performance and the structural invariants of data graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.