Abstract
We present an extension of the traditional Sharpe ratio to allow for the evaluation of non-normal return distributions. Combining earlier work in this area with stochastic simulation, we develop a procedure that allows for the construction of a benchmark for the evaluation of the performance of funds with a non-normal return distribution, while maintaining the operational ease of the Sharpe ratio. Similar to the latter, our procedure only requires the risk-free rate of interest rate, the distribution of the market index and an assumption about the type of return distributions to be evaluated. Unlike the Sharpe ratio, however, we are not restricted to normality but are able to handle any reasonable type of distribution. Since our benchmarking procedure is based on the no-arbitrage assumption, it also provides insight into the conditional arbitrage-free value of one distributional parameter in terms of another. We show that in case of the Johnson Su distribution the relationship between skewness and mean return is more or less flat. Skewness and median return on the other hand exhibit a strong negative relationship.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.