Abstract

AbstractThe Gell–Mann Lie algebra decontraction formula was proposed as an inverse to the Inonu–Wigner contraction formula. We considered recently this formula in the content of the special linear algebras sl(n), of an arbitrary dimension. In the case of these algebras, the Gell–Mann formula is not valid generally, and holds only for some particular algebra representations. We constructed a generalization of the formula that is valid for an arbitrary irreducible representation of the sl(n) algebra. The generalization allows us to explicitly write down, in a closed form, all matrix elements of the algebra operators for an arbitrary irreducible representation, irrespectively whether it is tensorial or spinorial, finite or infinite dimensional, with or without multiplicity, unitary or nonunitary. The matrix elements are given in the basis of the Spin(n) subgroup of the corresponding SL(n, R) covering group, thus covering the most often cases of physical interest. The generalized Gell–Mann formula is presented, and as an illustration some details of its applications in the Gauge Affine theory of gravity with spinorial and tensorial matter manifields are given.KeywordsIrreducible RepresentationAffine ConnectionReduce Matrix ElementShear GeneratorDilaton FieldThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.