Abstract

Given a system of s independent 1-forms on a smooth manifold M of dimension m, we study the existence of integral manifolds by means of various generalized versions of the Frobenius theorem. In particular, we present necessary and sufficient conditions for there to exist s'-parameter (s' < s) family of integral manifolds of dimension p := m-s, and a necessary and sufficient condition for there to exist integral manifolds of dimension p', p' <TEX>$\leq$</TEX> p. We also present examples and applications to complex analysis in several variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.