Abstract
Difference of exponential type Szász and Szász-Kantorovich operators is obtained. Similar estimates are given for higher order $\mu$-derivatives of the Szász operators and the Szász-Kantorovich type operators acting on the same order $\mu$-derivative of the function. These differences are given in quantitative form using first modulus of continuity. Convergence in variation of the operators in the space of functions with bounded variation with respect to the variation seminorm is obtained. The results propose a general framework covering the results provided by previous literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.