Abstract
Reset control is a simple non-linear control technique that can help overcome the structural limitations of linear control. Fractional control uses the concept of fractional derivatives to expand the range of possibilities when modeling a controller, making it more robust. Fractional reset control merges the advantages of both areas and is the object of this paper. Fractional-order versions of different reset controllers were implemented, namely a fractional Clegg integrator, a fractional generalized first-order reset element, a fractional generalized second-order reset element, and fractional “constant in gain lead in phase” controllers with first- and second-order reset elements. These were computed directly from a numerical implementation of the Grünwald–Letnikov definition of fractional derivatives, and their performances were analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.